skip to main content


Search for: All records

Creators/Authors contains: "Ketterle, Wolfgang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Free, publicly-accessible full text available November 1, 2024
  3. Free, publicly-accessible full text available August 1, 2024
  4. Free, publicly-accessible full text available August 1, 2024
  5. Abstract Quantum many-body phases offer unique properties and emergent phenomena, making them an active area of research. A promising approach for their experimental realization in model systems is to adiabatically follow the ground state of a quantum Hamiltonian from a product state of isolated particles to one that is strongly-correlated. Such protocols are relevant also more broadly in coherent quantum annealing and adiabatic quantum computing. Here we explore one such protocol in a system of ultracold atoms in an optical lattice. A fully magnetized state is connected to a correlated zero-magnetization state (an xy -ferromagnet) by a many-body spin rotation, realized by sweeping the detuning and power of a microwave field. The efficiency is characterized by applying a reverse sweep with a variable relative phase. We restore up to 50 % of the original magnetization independent of the relative phase, evidence for the formation of correlations. The protocol is limited by the many-body gap of the final state, which is inversely proportional to system size, and technical noise. Our experimental and theoretical studies highlight the potential and challenges for adiabatic preparation protocols to prepare many-body eigenstates of spin Hamiltonians. 
    more » « less
    Free, publicly-accessible full text available May 25, 2024
  6. Abstract

    Optically trapped laser-cooled polar molecules hold promise for new science and technology in quantum information and quantum simulation. Large numerical aperture optical access and long trap lifetimes are needed for many studies, but these requirements are challenging to achieve in a magneto-optical trap (MOT) vacuum chamber that is connected to a cryogenic buffer gas beam source, as is the case for all molecule laser cooling experiments so far. Long distance transport of molecules greatly eases fulfilling these requirements as molecules are placed into a region separate from the MOT chamber. We realize a fast transport method for ultracold molecules based on an electronically focus-tunable lens combined with an optical lattice. The high transport speed is achieved by the 1D red-detuned optical lattice, which is generated by interference of a focus-tunable laser beam and a focus-fixed laser beam. Efficiency of 48(8)% is realized in the transport of ultracold calcium monofluoride (CaF) molecules over 46 cm distance in 50 ms, with a moderate heating from 32(2) μK to 53(4) μK. Positional stability of the molecular cloud allows for stable loading of an optical tweezer array with single molecules.

     
    more » « less